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ABSTRACT

o sensitivity .of thin-walled cylinders subjected teo torsion are studied on

the basis of the Kz:mén-Donnell equations. A perturbation analysis, con-

sistent with the general theory of the post-buckling behavior of structures

VB P,

leads to eighth-order systems of complex, ordinary jdiffefential equations
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that are solved numerically for several sets of boundary conditions.
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g INTRODUCTION

 Many studies concerned with the post-buckling behavior of shells have
‘had ‘as their aim the- determination of the magnitudes'of external loads
associa'téd with buckles of finite depth. The discovery, usually by approxi-

mate energy methods, of post-buckling loadsA smaller than the clas_’sical,‘

—
———

g g initigl buc?:ling loads has justi‘fia'blyb been regardgd as evidence that the '
§~ ;«: classical loads may constitute unconservativev estimates of buckling stre_mgth.
é %j f* Occasionally, calculations by similgr approximate techpiques have also been
= = é made for shells having assumed imper-fections‘. . The toréion of 'c:t..rcular

&
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cylinders, perfect and imperfect, has been studied in this way by Loo [1]
and Nash [2]. ‘ |

| A differéné approach, pioneered by Koiter [3], [4], seeks to determine
the initial post-buckling behavior; an asymptotically exact calculation then
requires only the solution of linear proﬁlems to ascertain whether the

applied load increases or decreases immediately after buckling., A drop in

‘load after buckling of a perfect shell implies that the sheli is imperfection- -

gsensitive in ;he‘sense that a small igiéial gedmetfiéal'imperfection in the
shell would cause it to undergo snapébuckling at a'load that is lower than
the classical buckling load. Several shell problems have recently been
treated in this wa§{5—9]; this series of stﬁdies is continﬁed herein with’a
somewhat new twist, since torsion has not been considered previously. Tﬁe
shell theory used as a basis for the analysis is that attiibuted’in [10]
to Donnell, Mushtari,and Vliasov: as.applied to a circular cylinder, the
governing differential equations, whén written in terms of a normal dis-
placement and aﬁ Alry stress functioﬁ, are usually called the Ké%méh—Donhell
eqﬁations. | o

| In order to make this paper sglf-contained, and to provide a convenient
compendium of formulas for future use, the general theory of the post-buckling
‘behavior of structures [1] will be quickly_redeveldpéd for Donnell-Mushtari
Vlasov shell theory. With a slight change of’viewpoint (see [lO])fhe results

will also be applicable to shallow-shell theory.




. POST-BUCKLING THEORY

The equilibrium relations of the non-linear shell theory of Donnell-
Mushtari-Vlasov follow from the variational statement
[fa*Per__ + X% _Jaa=Evw c1)
A af aB

B B

vhere M*® and N* are symmetrical streschouples and stress-resultants,

respectiVely; KuB and EuB' are bending and membrane strains defined as
= ~ W »
KuB» ,a8 (2)

1
E = 2[Ua,8 + U

B J+b WH+SW W (3)

B,o aB 2 ",a,B

dn tgrms of the tangential displacements Ua and the normal displacement

W an@ baB is the curvature tensor of the undeformed'shell*. Commas
denote cgvariant differentiation ﬁith respect to general surface coordi-

nates &1 , 52 . The right-hand side of (15 represents the external

virtual work éf prescribed surface and edge loads, assumed constant-directional
in this paper. The assertion (1) is supposed to hold for all 6Ua and GWV h

that do not violate boundary conditions; the calculus of variations thén;leads

to the equilibrium equations

af ‘ aB LoB _
M JoB” byg ¥+ N w’m3 -p=0 (4)
N W= 0 (5)
’

where p is external (inward) pressure, and tangential surface loads are
assumed to be absent.
By writing the stress-resultants in terms of an Airy stress function

oB ow Byyp
N~ =c¢ ¢ F’ml (6)

a-) -
8 is defined (unconventionally) as _Eé éﬁh in terms of the
” 9~ 9¢& _
position vector i(gl,gz) and the unit (outward) surface normal ﬁ(EI,Ez).

*
Here b
[+
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where €  is the alternating tensor, Eqs.(5) are satisfied identically*;

Then, with the use of the usual constitutive relations

s w2 [ a8 | 5 | )
wh e —E -k % |
12(xv™) L RS ]
] Q)
e R @ -wE® v El g “B
Y
1% | Iy
‘where E is Young's modulus, v is Poisson's ratio, t 1is the shell
thickness, and gaB is the metric tensdr, Eqs.(4), (2), and (3) provide the
equilibrium and compatibility equations
4 ow BY ow By ' .
DV W+e bogF yy TP E EE W g (8)
1)4 Lo By =__1_ aw_By,, -
(Et V' F - baﬁ 5 € € W,aB w,wy (9)
where Et3
D::—-—-————-———-i-.
12(1 - v7)

In the case of cylindrical sheils, Eqs.(8) and (9) become the famiiiar
Karman-Donnell equations.

It will be assumed that the prescribed loading is such that a membrane
state governed by linear theory is always available as a solution (at least
approximately). Thus, if A denotes a scalar measure of thé magnitude of

the external loading, it is stipulated that

T T
: Sy
= o (10)
W =0
2 O

AsatiSfies-the variational equation (1). Hence, this variational equation

This is strictly correct only if the indices denoting successive covariant
differentiation may be interchanged, but such interchange is legitimate in
shells of zero Gaussian curvature, and in other shells introduces errors

no larger than those already inherent in Donnell-Mushtari-Vlasov theory.
"(See [11] for discussion of this point. ) This remark applies also to the
derivation of ‘Eq.(9).



can be written as

aB aB NeB
+
Q’ 7SR g + N Ge g + MW 5w ]dA
-2 fJ N“Bae dA - (1)
A oB
where
l B
ap = 2,8 * Ug ) * Pog? -2
is the linear part of EdB . Now suppose that a bifurcation off the

equilibriﬁm state (10) can occur at the critical load lc , and write the

expansion

- ()

- - .0 , o
U, v, U i
o a3 (2)
W 1 W W W
o
Q : {2)
Nqs 0B Nhs 28
0 (1, 2 ) . :
' 4] )
OB 0 Mhs Mbs
4} 2)
KuB 0 : KuB KGB
) &) (2)
EaB EaB EaB _EaB
o ) 2)
eaa : eaB gas eaB

where X - Ac as € =+ 0 ;3 the sécohd column on the right is the classical_
Euckling mode, assumed unique, and normalized in magnitude in some definité
way; and the succeeding members- of the expansion are all 6rthogonai to this
buckling‘mode in some predetermined fashipn.* fhus, in a &ell—defined
manner, € ;én be.éonsidared to represent the contribution of the classical

‘buckling mode to the buckled state.

* ' ; '
The only restriction that has to be placed on the choice of orthogonality
condition is that it must not be possible for the buckling mode to be
‘orthogonal to itself!
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The elements within each of the columns of (13) are constrained by
the linear relatioms (2), (6), (7) and (12). The non-linear strain

displacement equation (3) couples the columns, since

° °
§ EaB = eaB
% (o ) |
! EuB T as.
but (2) (2> 100 '
EuB = Cup + E-w,aw,ﬁ

and so on. Finally, the variational statement (11), reduced by the use

of (10), gives

/ A)" {?z’“ssxas 4%’“55%8 £ o6 oW gldA
+ ejj[M 5K g ”“Bceue + (xﬁ“g%; + a8 %I) oW glaa
2][ “Bsx + SR8 st (;\N“SB) +(IN)°‘B%) Gol) REL 1A
+..=0 | (15)

A variational equation for the buckling mode and load, obtained

from (15) by letting e - 0 , is

(1)Ol (g 0, dl) -
8 = 6)
fj S+ N8 o+ AN Voo W glda =0 (18)

and a consequence of this relation is the "energy" equation

[ f (l’“ﬁm w“B() glda = -2 j [ xe (3 KT | (17)

The aforementioned orthogonality condition will be chosen as

00‘8( tJ)

,a ,8

”'[ Bm ()aB (j)

gldh = - A fj da = 0 (18)

for j > 1 i by (16), it also holds for j =0 .



Note that the constitutive equations'(75 imply the symmetry

relations G%B (j) (JLB )
MTK_,= M"K
1] aB
19
el (el @
N E_ = N'TE
oB afB
for all i and j . With the use of (17), (18), and (19) the choice
. (v (1)
EUQ’ = Ua- and 6W =W in (15) then gives
m e T ¢ D\ N s
().--l)ffN T ‘H N oW g A
2 (1)6(1) (2) Cz)s(l) (1) ~
+ [[I2x**w _w,+ N JdA + ... =0 (20)
A ,a B ,B
Hence
%- = 14+ ace + b”ez + oes (21),
[ ’ ’
where e (1 (1)
[ W, dA
3 A ¢ B -
S YN o B O ' 22)
- ¢ /w**w w ., aa
A 20, B
m fl) €3] (256(1\ (15
ff[ZN W TN WoW oo lda
L ! } ] . 2 .
b=, asm cn . (23)
IAI :a ’B dA'

Aivafiational equation governing the elements of the '22 column
in (13) can easily be writteﬁ; but wili not be needed. Instead, it is easier
, (1 (i)
to work nirectly with the perturbation equations for W and F (1 = 1,2,...)

that can be derived directly from (8) and (9) as



4} 1) e (1)
v+ %P NG . B,
' af " ,wy c s0B ,
. 28y -
_._L) V4 (%‘)"'". amEBY (vl? -6 | (24)
Et ) o s WY .
2) (2‘) onr {2}
p VW4 e BYb - 2 NeBy
af ,my c 5 0B
_ ow BY n fl) %aB 1) ’
' € € F,my B + a A N W,ue ] (25)
S 1 V4 C%) 0.0.) B.Y(Z) - _]; QWSBY fl) (éj)
Et .wv 2. ,GB WY
and so on. -
D a)

The coefficient a depends only cn W, F, and vanishes whenever ‘
post-buckling behavior is independent of thersign of the buckling mode.:
. When a = 0 , the initial post-buckling behavior depends on b , the
evaluation of which requires the determination of (é) and (%).

If a=0 and b <0 » the shell is imperfection—sensitive. This

is demonstrable from a repetition of the analysis, with (3) replaced by

1 N 4"

1
EGB e * 2 w,qw”3 +3 _(‘w,m’w,B + w,aw’B) (26)

v o~ oA )
when W 1s an initial normal displacement. If W is chosen as € W,

a singular perturbation expansion Of-the form

T o o 2) -
W W W A 2 W
= A + € € + oo
o 1a : (2>
F F F F
- (1,1 N (2,1)
%7
+%€ ¢ + €€ : T
a,n (2,1} ‘
) | F | Lk
—(1,2)
W
+,E’2€ {1’2} + .

4... =0 @7
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becomes appropriate, where lim[Iim Al= A but lim A =0 for 3’# 0 .
e¥o € ¢ €0

It is then found that

A-ANJe +aci+b e+ = ANITH ... . (28)

Sketches of A/Ac vs. € , given by (21) and (28) with a =0 and b;< o,
are shown in Figure (1) for ©=0 and T #0 . Let As denote the
maximum value of A 1n‘the case 2' # 0 ; then, as Koiter just showed in {11 ,
A A\ |
1—3)3/2 - 3By s (29)
A/ 2 A -
¢’ c
A ~2/3
so that {1'— ——) 0(e ) , and small initial imperfections can induce
' c
large reductions in buckling strength,
It may be desirable to calculate the post-buckling variation of A

with the generalized displacement defined by

=L et x + P e e . (30)

A

(The significance of A  is that (AA) represents the decrease in potentiél

-energy of the applied loads.) Now let

_ %aB ©
8, fAj N e g dA (31)
‘and note thét letting Geae = gasé 8W =.0 in (15) shows that
M, .
If 'Nze & da=0 (32)
A . o -

for all j # O. Sub;titution of (13) into (30),'and the use of (14),

17), (18),'(19) leads to

. 0
8 =2 - S fRTW WodA+ ... (33)
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If a=0, 22 P (A - X )/(Acb) , and therefore the initial post-buckling
stiffness d\/dA at A = A_ is
fl) (1) . »
cu) 1 -1 - —
= = (8, ~ 5% _ff dal .
i (dA A2 o 2bA e A ,al 20
| .
% . - . . .
Since | dA/dA = Aol before buckling, the ratio K of the initial post-
buckling stiffness to the prebuckling stiffness is
' ~1
” o 3(13 (D
, a ” dA :
K o= | 1- 8, . (34)
ef SaB © ‘
2bx, fJ N €,q 94

A

All of the results obtained are applicable in shallow~shellvthéory, wherein

the middle surface of the shell lies a distance Vz(il,gz) above a plane,

the curvature tensor baB is taken as -z o ° and the metric tensor is
b4

- taken as that of the (51,52) system .in the reference plane rather than in

the surface.

CYLINDER ANALYSIS

Differential Equations

For circular cylinders under torsion (Figure 2) the Kéfméﬁ—Donnell

equations are

A 1 =

DV W+ ) F S(F,W) |
n ' (35)
4 Et - - . Et
VE-R W = s, W)

where s(P,Q) =P xx Q + P Q - 2P Q . The average shear
. XX

syy o JY XX 3 XY TaXY

%{ny)av. will be chosen to play the role of the generaiized

W

‘stress T

load l‘; hence, with o

F = - txy {36)
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the appropriate perturbation expansion is

. o o)
i 0 W W
=1 | o +¢ | + ez 223 B S 37)
The buckling equations (24) become
PR LI 4\ 1) :
D V' W+ & F -21T W =-0
R 7 ,xx C  LXy
] ' 38
V F- —/W = 0
R ,xx
and, with the anticipation that a = 0 , Egs.(25) are
2 4, @ 2y o
D V'W4E F -2t Vo " S(F,W)
o 39
4!’27 Et(27 Et o (39
v F-——EW’XX=-—-§-S(W,W) .
‘Let £ =x/L, n=y/L, and write
m .
W =1t Re [wl(E)eian]
' 40
B () ke py et -
"\ R 188
viherein o is a c@rcumferential wave number méking oR/L an integer. It
can now be verified that the coefficient a , given by Eq.(21), does, in
fact, vanish. Substitution of (40) into (38) givés‘ |
wi'' 2 u . "ot 4 1o g2 T
1,,7 2¢ Wy 2ig4 A, ¥y + qa wl + 12 Z fl = 0
. 41).
fnn 2 . 4 "o ’ ( .
1 - Z‘u ~f1 + Q fl - W 0

where 2z is Batdorf's parameter [12]

2
zZ = L Yl - v (42)

Rt
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and ‘ 2

' A, = °D (43)

{0 (M
The functional forms of ~S(F, W) and” S(W,W) indfbate that the solution

of (39);can be written

LY

(o) ' |
W= LAy (0) + Re[wzz(ae“““n (44)

2 2.2
o Fmr F? {£p(8) + Relfyy(De*™))

and then, with a bar to denote complex conjugate,

"A" 1"t P 2 1
Yoo | 4+ 1272 fzo = - 60’z Re[(fl ) PR (45)
a2 .
LA L B || i - 1"
£20 7 V20 = G (v (46)
wallt - Bazw - 4iA vl + 16a4w + lZsz”
22 22 22 2 22
= - Al 1. ,
6u Z (f vy + f1 wl 2f! Wl) ‘ (47)
2
ity - 2.0 4 - = B -
f22 8o f22 + 16a f2 ?2 [w (wl) ] .
' - 2) @) (1) m ,
Note that a contribution to {W,F} proportional to {W,F} is ruled out by
the orthogonélity condition
Ld 2 o [N Lo
dylW _W + W W = .
o [5i88,+98.0-
o o
From the condition that the circumferential displacement V bé'Single.
‘valued, it follows that
21R 21R ) :
1y - 1 - LA 3 214y =
J v 4y -J [ely = W) - § - 50 %ley = 0
o o
whence, in the absence of a net end thrust,
El 2 )
£ +—-—- (w AR - (48)

20 ©
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This is consistent with (46), and now féb can be eliminated from (45),
which becomes
2

e Y . 2 o » f
vyt + 122 Wy 3o [wlwl + 2 Re(flwl) h . (49)

Note that Vo0 » fZO are real, whereas Wl s fl_,'w22 , f22 are

complex.

Boundary Conditions

Calculations will be made for the following three sets of boundary

conditions at " x = O;L (see Figure 2):

1. W=4¥ =0 (simple support)
. $XX
' 1 2nR
Nx= V’y = 0 ; E;ﬁ:# nydy = tt
II. W=Ww_ =0 (clamped)
. ? -
1 27R
Nx= V’y = 0 ; E;ﬁjéo nydy = t1
I1II, W=W_ =0 (clamped)

7 1 - 2R 27R
v _ =V = Q 3 Eiﬁiﬁo nydy = tT 3 § Nxdy =0,
: o

These sets of conditions are designated 83 , C3 , and C1 Ey Yamaki
and Kodama [13] in their recent study of torsional buckling.

ﬁitﬁ fhese boundary conditicns, it’is.easily éhown’that there.is,no
lqss.in generality in assuming that "the real parté'of all functions of £
are symmetrical, and their imaginafy parts an;is}mﬁetfical, in the

interval 0 < g <1.

Buckling Problem

‘Donnell's early approximate solutions for torsional buckling of

- eylinders [14] were somewhat improved upon by Batdrof, Stein,'and Schilderout [12]:
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but the most accurate available solutions to the eigenvalue problem (41)
for a variety of boundary conditions arevtﬁe essentially exact ones pre;ented
by Yamaki and Kéd;ma. In the present work, however, a unified numerical
apprqach was used in both the buckling and post-buckling problems, and the
buckling”results of Yamaki and Kodama served as a check on the accuracy of
the procedﬁre.
A sfandard fini§e~difference scheme was uséd to approxiﬁate Egs.(41).

Tﬁe'éonseQuent‘difference equations, together with appropriate versions of
the boundary conditions I, II, and IIIiin éer@s of 'wl and £, , provided
eigenvalue problems in matrix form that were easily solved with the help of
complex arithmetic programmed By means of Fortran IV on an IEM 7094.computef.
(Detailé of the finite—difference analysis are given in the Appendix.) The E
eigenvalues A; were minimized wiﬁh respect to the circumferential wave
number @ on the basis of the simplifying assumption that couid vary
continueusly; ;hg results thus found fpr Ac and the minimizing #alues cf‘ o
are tabulated in Tables I, II, and III for the three sets of boundéry condi-
tioné considaféd. Compaiison of these results with those of Yamaki and Kodama
(who actually tabulate ks - A‘/Tr2 and B‘:= a/w) revealed discrepancies of
only small fractions of one per cent#.,

Plots of Ac vs. 2 are shown in»Figﬁre 3;> famaki and Kodaﬁa discuss
théblimitations on these results associated with the pécutrence of small
numbers of circumferential waves, and they also;make inferences concerning tﬁe

relative effects of various types of boundary constraint,

this paper, Vv a-% » Wwhereas Yamaki and Kodama used v = .3 ; but‘they
also made a study of the influence of v which indicates that this small
- difference is quite negligible. '
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{2 (D
Post—buckling Problem (W, ¥)

The differential equations (47) and (49) for w £

22 » £33 > a0d Wy
were also discretized and, with Ac ,» 0 , and the non-homdgeneous right-hand
sides available from the solution of the buckling problem, were solved

numerically. (Again, details are given in the Appendix.) In all cases, the

eigenfunctions wl s fl« used in the‘npn-homoggneous terms were.normalized

=1.

to make lw
_ 1 max

Evaluation of Post-bueckling Coefficient b’

Invoking the initial étipulation that oR/L be an integer, and
exploiting the symmetry properties of the buckling and post-buckling modes,

permits the'formula (23) for -b to be transformed to

¢ 1/2

—b 3 Re[-4F wiw'. . = 2f. wiw!. + 4f"w w.., - 4f'w
) 1"1¥ 20 1¥1¥22 1 Y1¥22 122
1- v ¢ | ) 7
1"
- 4Ejwyvsg + 2f Jwvg, = 22(W1) + 2f20w1V1 fzz(W )2
1/2 ) ~1 :
. |
- 4z}, Wy da} Uo InGa g )da} (50)

in terms of the bucklipg solutions L) fl - and the post~buckling solutions
V0 ,'wiz , and f,, . The function f35 . in (50) is given by (48) in terms
°f~~w20 and w o There is, of cou?se, an approximation iﬂhereﬁt in
fusing these solutions, as-well as the corresponding values of Ac and o ,
in the formula (50), since the requirement that aR/L be an integer was
relaxed in Fheir calculation. o

The integrals in (50) were evaluated numerically; the results for

A.*—““—“Ef are given in Tables‘I, I1, III\and are plotted againsﬁ Z in
1- v o

Figure 4,
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Evaluation of Post-buckling Coefficient K

Let y be the apparent shear strain defined by +yL = V(L)- V(0) .

Then, in the present problem, the post-buckling stiffness ratio K has

JF—

the interpretation

' d(t/1t) |
. L[dr) . ¢ (51)
K-G()

|
R T aty/v)
|

ol E
where G = 7(1) is the shear modglus,'and T. = G, . Eq.(39) can be

manipulated into the form

- 1/2 1
K= [} +-§2{l§!l I Im (wlﬁi)dg] ’ . (52)
c o

-and, for the choice v = %—, provides the results in tables I, II, III,
Figure (5) shows a series of plots of T/Tc VS, y/yc in which the initial

post-buckling slopes K are shown to scale.

DISCUSSION OF RESULTS

It is found by interpolation that the post-buckling coefficient b
is ﬁegative,vand hence that imperfection—sensitivity.exists, in the folldw—
ing raﬁées of Z -
‘ Case I: z>2,0
Case II: Z > 8.0 (53)
Case I1I: 2Z > 9.7 .

&

Iﬁ allyéhree cases, the magnitude of b tends to zero as z ‘becomes very
large. The magnitudes of the actual buckling stréssés T of the cylinders
in these ianges of Z cannot, of course, be predicted, since they depend on
the imperfections as well as on b . However, a rough indication of the
extent to which buckling strengths might be degradéd is afforded by Eq.(29).

» : (S}
Because of the way the buckling mode W was normalized, the imperfection



37

n _ . ~ Y
parameter ¢ in this equation can be identified with &/t , where 6§ is

the maximﬁm amplitude of that part of the initial deflection that is in
the shape of this mode. The curves in Figure (6) based on Eq.(29), show
how = /T (* by /A ) varies with 6/1 for b= - .01, - .1, and - 1 . It
may be recalled (see Figure &) that for Z > 100 , (-b) remains 1éss
than .i , and only'iﬁAcase I does it ever exceed .2 , near Z = 10 .
Accordingly, it might be deduced from Figure (6) that, with reasonable
fabricatlon care to keep 6/t less than, say, .5, T, should rarely be
1ess_than about 70% of To » |

This is more or less consistent with the eXperiméntal data collected
from various sources by Batdorf, Stein, and Schildcrout in {12] and
repro&uced in Figure (7) on a plot of ks = Ac/ﬂ2 vse Z for case I,
together with the curve for b . Unfortunately, there is little daﬁa in
the range‘of maximum imperfection—senéitiVity predicted for Zn~ 10 .
(Admittedly, thin cylinder proportions get awkward at such values of Z.)
Fu:thermore, one mightAexpect to see a generaiAimprpvement between classical
theory and experiment as Z increases to large values, but this does nbt
seem ﬁo occur., However, this kind of eXpéétation may not be juétified,'since,
as is evident from Eq.(29) and Figure (6), the effect of a beneficial
decrease in the magnitudé of (hb) could easily bfvnullified by a simultaneous

a
small increase in &/t .

v,
The graphs in Figure (5) have an interesting-gonsequénce. In Case I
there is evidently a small range of Z around Z = 10 , in which the
apparent shear strain y , as well as the average Shear stress 1 , decreases
after buckling. This does not occur in cases II and ITI . Whenever b < 0,
snap buckling can be expected under a monotonically increasing torque;- butlfzé#(<a

- snapping would also occur under an imposed monotonically increasing relative
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rotation of the cylinder ends. It might be amusing to try to verify this
last prediction experimentally; but it should be noted that it applies
.only to perfect cylinders; and sufficiently large iﬁperfections might

prevent the occurrence of this kind of snapping.
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. APPENDIX

NUMERICAL ANALYSIS

Buckling Problem

The differential equations (41) were approximated, in the interval

0<¢g Sg% by the N finite-difference matrix equations

“. A(a)zn_l*+ B(a)zn + A(a)zn+l =0 (n=1,2,...N)
where

¥ 'wl

wi'
Z =
£y
"
| f1
— A_z i 0 . 0 —
-1 -2
- iaAcA 0
Alo) = '
22 0
A2
" 2472 -1 0 0 ]
B(a)= | o “2(a®-2"%) 0 1272
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0 -1 o —2(2-07%)
1
A = 3%

and the bar denotes complex conjugate. In Potters' method [15]

(essentially Gaussian elimination) the equations

z. = -P z

n n'}h+l (=0,1,2,...0

are written, and then (Al) provides the recurrence matrix relation

— -1 ' _
Pn = [B - A Pn—ll A (n had 1,2,;:.N)

(a1)

(a2)

(43

(44)

(as)

(46)

(A7)
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In Case I, the boundary conditions imply vy = wi'= f1 = fif= 0 at

£ =0, whence z_ =0 . With the initial condition P_ =0, (A7)
is used_to ggt Pl ’ P2 y eae PN . .
Without loss of generality, the symmetry conditions

In(z) =Re(2') =0 €E=3
are now imposed. These conditions imply
z -%Z =0
n n
- - (A8)
z + £ - Z - Z = 0
Nl M1 N-1 N-1
from which it is.deduced that
iple 3L - p B 1z =0 ' (A9)
N N N-1 N=-1" °N *
For a given o , the eigenvalue Ac must therefore éatisfy the 4 x 4
determinatal equation
-1 — — _
PN + PN__1 - PN—l - Pan = 0 . (A10)

Once the eigenvalue Ac (minimized with respect to o ) was found, 2
was calculated, to within an arbitrary factor, from (A9), and a "backward"
sweep based on (A6) provided all the other 2's making up the eigenmode.
Then 2z was normalized to make lel =1.
E . max
For the other two cases, the boundary conditions cn Wy fi' are
easily shown to be:

. = = = T -
Case I1: w W f1 fl 0

K]
1 1
171 2

TTT. = vl = = £IYF 2., _
Case III: Wy =Wy o= f1‘+ v of, = fl (2 + Vo fl =0 .

1
The only new things needed to handle these cases are appropriate

‘dnitial values of the matrix LI In both casés the procedure used was to
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introduce a fictitious station at n = -1 ,» write the boundary conditioﬁs

in the form

-G ¥.3+H 2 +6 % = 0 (A11)

#

and also write the difference equation (Al) at n =0 . Then by elimina-

tion of .Z_i it follows that

P=(@®+¢C At B)'l ¢ +¢6 A~1~A) . (A12)
In Case 1I,
0 0 0 0 "1 0 0 0]
1 0 0 o 0 0 0 O
¢ = 0O 0 0 O H = 0 0 1 o (a13)
0O 0 o0 o 0 0 0 1
and iﬁ Case III,
S | 0 | 0 !
G = ) H = 5 (A14)
0 0 -2+ O 0 va :
0 o 0 1 Lo 0 0 1
Post-buckling Problem
The differential equations (47) are approximated by' 
A(Za);n_l + B(ZQ)Cn + A(2a)§n+l = .gn (A15)
with .
3 v}z 7 [ 0 “
wl! - GaZZZ(f wi'+ fly, - 2f! w'}
2 o 171 171 171
; = fz g = b'.' ,?;’j’. O ' (A16)
) :
1 o " __ 12
L fz . L 2 [wlwl (Wl) ] -

Potters’ method now says

s Qi t X (A17)
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end (Al5) gives

Q = [B(2e) - K@2a)a__,17" AQ20) (a18)

pe——

Xy = [B2e) - Koo, ;17" [g, - KC2adx, ;1 - (a19)

The initial values Qo are the same as those for Po in the buckling

|
probleq s except that o 1s replaced by 20 wherever it appears;

X

0o = 0 in all cases. The symmetry conditions (A8) now give

-1 .
) = -1 - = _pl --1-—] »
By < [?an PO W Y :l | [xN-1'+ X1 Ty g T By Xgd (4200

and then all the ¢'s are found by means of aibackward sweep based on
(A17).

An obvious 2 x 2 matrix analogue of these procedures was used to
calculate Vo0 .from Eq. {(49). The number of inteivalsrused in the calgula~

tions varied from N = 50 to N = 90 .
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TARLE 1
Case I: = W,xx ='V,y = 0
Z A o b 3 K
c 1-w ‘

0 52.67 2.51 .2139A 671
1 53.18 2.57 .1508 .582

3 56.51 2.86 -.0832 -2,00

10 74.29 3.97 -.2364 3.42

30 124.5 5.90 -.1583 -7.51

100 271.6 9.29 -.0756 - .913 -

300 602.9 13.39 -.0342 | - .07
1,000 1482, 19.75 -.0122 - .175
10,000 8389 37.4 -.0015 - .031
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'TABLE II
Case 11: = W’x = N V-Y =
Z Ac o - _bvz K
0 88.58 3.79 .2513 .673
1 88.76 3.80 | 2405 .663
'3 89.88 3.87 .1694 .576
10 99.58 A -.0682 - .938
30 141.9 6.13 -.1385 -6.23
100 286.4 9.44 -.0833 -1,212
1300 617.6 13.78 ~.0346 - .39
1,000 1502. 19.94 ~.0124 — 179
© 10,000 8422, 37.5 -.0015 - .052

26—



TABLE III

Case III: W = w,x = .y
(3‘ -0

Z A o : 2 K

c l1-wv
0 88.58 3.79 .256 .677
1. 88.78 3.79 .247 .669
3 90.01 3.88 .192 .606
10 100.8 4,49 ~.0042 ~ .030
30 146.6 6.35 -.0961 -1.249
100 298.5 9.86 | -.0742 - .797
300 648.4 14.69 | ~.0350 - 342
1,000 1593, 21.45 -.0135 - .176
10,000 9094, 41.9 -.0017 - .052

-27~
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Equation (30) should read

- 0ug
A= JJ N eaB dA (30)

" The phrase preceding Eq. (33) should read

"Substitution of (13) into (30), and the use of (14) and (19) leads to"



